

2021 CED-IADR/NOF **Oral Health Research Congress**

Brussels, Belgium

Martin Ong, Paul Farrar (SDI Limited, Australia)

USABILITY STUDY ON GLASS IONOMER CEMENTS / GLASS HYBRIDS.

OBJECTIVES

This study aims to evaluate and rank the usability of market leading Glass Ionomer Cements (GIC) / Glass Hybrids (GH) in their respective capsule systems. The usability factors covered in this study are listed below:

Usability Factor	The desired performance of each usability factor to deliver the best user experience is defined to be as follows:	Usability Factor	The desired performance of each usability factor to deliver the best user experience is defined to be as follows:		
Activation Force (AF)	The activation of a GIC / GH capsule broadly describes the process of depressing the capsule plunger to introduce the powder and liquid components before thorough mixing on a triturator. As low as possible without causing premature activation ("Preactivation")	Paste Stickiness (PS)	Does not stick to instruments	e Length	
Extrusion Force (EF)	The extrusion force of a GIC / GH capsule broadly describes the maximum force required to fully extrude the mixed contents of the capsule. As low as possible without causing premature paste extrusion ("Spurting")	s the maximum apsule. sion ("Spurting") Nozzle Design (ND) Nozzle Length - Measured vertically from nozzle base to tip.		Nozzi	
Paste Viscosity (PV)	Depends on user preference and restoration type		As long as possible for maximum reach		

CONCLUSION

Within this study, the results indicates that HV has the highest overall usability score (14), with SC being a close runner-up (13). This was achieved through a combination of a user-friendly capsule design and smart product design.

RESULTS AND DISCUSSION

	Riva SC (SC)	Riva SC HV (HV)	Ketac™ Universal Aplicap™ (KU)	Equia Forte® HT (HT)
Activation Force (N) n=20	27±3ª	27±3ª	N/A ¹	38±2
Extrusion Force (N) n=20	143±14 ^b	139±32 ^b	413±47	577±47
Paste Viscosity (gF) n=5	24±4	67±12°	170±29	66±4°
Nozzle Length (mm) n=3	15.1±0.1 ^d	7.7±0.1	7.1±0.0	15.2±0.1 ^d
Paste Stickiness	0	0	0	

¹ Ketac[™] Universal Aplicap[™] is activated using an additional activator and cannot be tested through the indicated test method. Mean with the same letters are not statistically different (p<0.005) Data analysed using unpaired t-test

EVALUATION OF RESULTS

Usability Factor	Desired performance		1	2	3	4
Activation Force	As low as possible without causing premature activation ("Preactivation")		KU	нт	HV/SC	HV/SC
Extrusion Force	As low as possible without causing premature paste extrusion ("Spurting")	щ	HT	KU	SC	HV
Paste Viscosity	Depends on user preference and restoration type	SCOR	NA			
Paste Stickiness	Does not stick to instruments		HT	SC	ну/ки	HV/KU
Nozzle Design	Nozzle Length		KU	HV	SC/HT	SC/HT
Results indicate that: Paste Viscosity						

ACTIVATION FORCE

PASTE VISCOSITY

USABILITY SCORE

EXTRUSION FORCE

NOZZLE DESIGN

Riva SC (SC)

- HV and SC performed best on Activation Force.
- HV performed best on Extrusion Force.
- HV and KU performed best on Paste Stickiness.
- SC and HT performed best on Nozzle Design.

Additional comments:

- Activation Force
 - KU was ranked lowest as it requires an additional tool for activation unlike the other evaluated products.

•	Paste Viscosity	
	- Darformanca for paeto viecoeity has no	١

- Performance for paste viscosity has not been ranked as it is dependent on user preference and restoration requirements.
- It is therefore ideal to have a range of options available.
- Paste Stickiness
- SC ranked higher than HT as paste strand is noticeably thinner, indicative of a less sticky paste.

Overall	Usability Ranking (Ascending left to right)		KU	SC	HV
comparison	Overall Usability Score (Highest score given if tied)	8	8	13	14

EXPERIMENTAL METHODS

Riva Self Cure/ SDI Limited (SC), Riva Self Cure HV/ SDI Limited (HV), Ketac™ Universal Aplicap™/ 3M (KU) and Equia Forte ® HT/ GC Corp (HT) were evaluated in their respective capsule delivery systems.

Activation Force of a capsule (Plunger) was determined via the maximum value measured by a compression test (INSTRON #5942). Force values were recorded every 1.25 N over a travel distance of 4.5 mm at a travel speed of 150 mm/min.

Extrusion Force of a capsule was determined via the maximum value measured by a compression test [INSTRON #5566]. Force values were recorded every 10 N between the travel distance of 10 - 13.5 mm at a travel speed of 45 mm/min.

Riva SC HV (HV) Ketac™ Universal Aplicap™ (KU) Equia Forte® HT (HT)

Paste Viscosity of an extruded cement was determined via the maximum value measured by a compression test (Brookfield CT3 Texture Analyser). Force values were recorded every 0.1 mm over a travel distance of 4.0 mm with a probe (LA39) speed of 2.00 mm/s.

Paste Stickiness of an extruded cement was evaluated via photos taken during a compression test (Brookfield CT3 Texture Analyser). Probe (TA8) was used at a travel speed of 2.00 mm/s.

Nozzle design was evaluated based on the nozzle length measured vertically from the nozzle base to tip.